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Abstract. A comparative study of the magnetic properties of shunted and unshunted two-dimensional
Josephson junction arrays (2D-JJA) is presented. Using a single-plaquette approximation of the
2D-JJA model, we were able to successfully fit all our experimental data (for the temperature, AC and
DC field dependencies of susceptibility) and demonstrate that the dynamic reentrance of AC susceptibil-
ity is directly linked to the value of the Stewart-McCumber parameter βC . Based on extensive numerical
simulations, a phase diagram βC − βL is plotted which demarcates the border between the reentrant and
non-reentrant behavior in the arrays.

PACS. 74.25.Ha Magnetic properties – 74.50.+r Tunneling phenomena; point contacts, weak links,
Josephson effects – 74.80.-g Spatially inhomogeneous structures

1 Introduction

According to the current paradigm, paramagnetic
Meissner effect (PME) [1–6] can be related to the pres-
ence of π-junctions [7], either resulting from the presence
of magnetic impurities in the junction [8,9] or from uncon-
ventional pairing symmetry [10]. Other possible explana-
tions of this phenomenon are based on flux trapping [11]
and flux compression effects [12] including also an impor-
tant role of the surface of the sample [3]. Besides, in the
experiments with unshunted 2D-JJA, we have previously
reported [13] that PME manifests itself through a dynamic
reentrance (DR) of the AC magnetic susceptibility as a
function of temperature. These results have been further
corroborated by Nielsen et al. [14] and De Leo et al. [15]
who argued that PME can be simply related to magnetic
screening in multiply connected superconductors. So, the
main question is: which parameters are directly respon-
sible for the presence (or absence) of DR in artificially
prepared arrays?

Previously (also within the single plaquette approx-
imation), Barbara et al. [13] have briefly discussed the
effects of varying βL on the observed dynamic reentrance
with the main emphasis on the behavior of 2D-JJA sam-
ples with high (and fixed) values of βC . However, to our
knowledge, up to date no systematic study (either experi-
mental or theoretical) has been done on how the βC value
itself affects the reentrance behavior. In the present work,
by a comparative study of the magnetic properties of
shunted and unshunted 2D-JJA, we propose an answer
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to this open question. Namely, by using experimental and
theoretical results, we will demonstrate that only arrays
with sufficiently large value of the Stewart-McCumber pa-
rameter βC will exhibit the dynamic reentrance behavior
(and hence PME).

2 Experimental results

To measure the complex AC susceptibility in our arrays
we used a high-sensitive home-made susceptometer based
on the so-called screening method in the reflection config-
uration [16–18]. The experimental system was calibrated
by using a high-quality niobium thin film. Previously [18],
we have shown that the calibrated output complex volt-
age of the experimental setup corresponds to the complex
AC susceptibility.

To experimentally investigate the origin of the reen-
trance, we have measured χ′(T ) for three sets of shunted
and unshunted samples obtained from different makers
(Westinghouse and Hypress) under the same conditions
of the amplitude of the excitation field hac (1 mOe <
hac < 10 Oe), external magnetic field Hdc (0 < Hdc <
500 Oe) parallel to the plane of the sample, and fre-
quency of AC field ω = 2πf (fixed at f = 20 kHz).
Unshunted 2D-JJAs are formed by loops of niobium is-
lands linked through Nb−AlOx−Nb Josephson junctions
while shunted 2D-JJAs have a molybdenum shunt resis-
tor (with Rsh � 2.2 Ω) short-circuiting each junction (see
Fig. 1). Both shunted and unshunted samples have rectan-
gular geometry and consist of 100× 150 tunnel junctions.
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Fig. 1. Left: photograph of the unshunted array; right: pho-
tograph of the shunted array.

The unit cell for both types of arrays has square geometry
with lattice spacing a � 46 µm and a single junction area
of 5 × 5 µm2. The critical current density for the junc-
tions forming the arrays is about 600 A/cm2 at 4.2 K.
Besides, for the unshunted samples βC(4.2 K) � 30 and
βL(4.2 K) � 30, while for shunted samples βC(4.2 K) � 1
and βL(4.2 K) � 30 where [19] βL(T ) = 2πLIC(T )

Φ0
and

βC(T ) = 2πCJR2
JIC(T )

Φ0
. Here, CJ � 0.58 pF is the capac-

itance, RJ � 10.4 Ω the quasi-particle resistance (of un-
shunted array), and IC (4.2 K) � 150 µA critical current
of the Josephson junction. Φ0 is the quantum of magnetic
flux. The parameter βL is proportional to the number of
flux quanta that can be screened by the maximum critical
current in the junctions, while the Stewart-McCumber pa-
rameter βC basically reflects the quality of the junctions
in arrays.

It is well established that both magnetic and trans-
port properties of any superconducting material can be
described via a two-component response [20], the intra-
granular (associated with the grains exhibiting bulk su-
perconducting properties) and intergranular (associated
with weak-link structure) contributions [21,22]. Likewise,
artificially prepared JJAs (consisting of superconducting
islands, arranged in a symmetrical periodic lattice and
coupled by Josephson junctions) will produce a similar
response [23].

Since our shunted and unshunted samples have the
same value of βL and different values of βC , it is possible to
verify the dependence of the reentrance effect on the value
of the Stewart-McCumber parameter. For the unshunted
2D-JJA (Fig. 2a) we have found that for an AC field lower
than 50 mOe (when the array is in the Meissner-like state)
the behavior of χ′(T ) is quite similar to homogeneous su-
perconducting samples, while for hac > 50 mOe (when
the array is in the mixed-like state with practically ho-
mogeneous flux distribution) these samples exhibit a clear
reentrant behavior of susceptibility [13]. At the same time,
the identical experiments performed on the shunted sam-
ples produced no evidence of any reentrance for all values

Fig. 2. Experimental results for χ′(T, hac, Hdc): (a) unshunted
2D-JJA for hac = 10 and 100 mOe; (b) shunted 2D-JJA for
hac = 10, 25, and 200 mOe. In all these experiments Hdc = 0.
Solid lines are the best fits (see text).

of hac (see Fig. 2b). It is important to point out that the
analysis of the experimentally obtained imaginary com-
ponent of susceptibility χ′′(T ) shows that for the high-
est AC magnetic field amplitudes (of about 200 mOe)
dissipation remains small. Namely, for typical values of
the AC amplitude, hac = 100 mOe (which corresponds
to about 10 vortices per unit cell) the imaginary compo-
nent is about 15 times smaller than its real counterpart.
Hence contribution from the dissipation of vortices to the
observed phenomena can be safely neglected.

To further study this unexpected behavior we have also
performed experiments where we measure χ′(T ) for differ-
ent values of Hdc keeping the value of hac constant. The
influence of DC fields on reentrance in unshunted samples
is shown in Figure 3. On the other hand, the shunted sam-
ples still show no signs of reentrance, following a familiar
pattern of field-induced gradual diminishing of supercon-
ducting phase (very similar to a zero DC field flat-like
behavior seen in Fig. 2b).
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Fig. 3. Experimental results for χ′(T, hac, Hdc) for unshunted
2D-JJA for Hdc = 0, 13, 19.5, 26, and 30.5 Oe. In all these
experiments hac = 100 mOe. Solid lines are the best fits (see
text).

To understand the influence of DC field on reentrance
observed in unshunted arrays, it is important to emphasize
that for our sample geometry this parallel field suppresses
the critical current IC of each junction without introduc-
ing any detectable flux into the plaquettes of the array.
Thus, a parallel DC magnetic field allows us to vary IC

independently from temperature and/or applied perpen-
dicular AC field. The measurements show (see Fig. 3) that
the position of the reentrance is tuned by Hdc. We also ob-
serve that the value of temperature Tmin (at which χ′(T )
has a minimum) first shifts towards lower temperatures
as we raise Hdc (for small DC fields) and then bounces
back (for higher values of Hdc). This non-monotonic be-
havior is consistent with the weakening of IC(T ) and cor-
responds to Fraunhofer-like dependence of the Josephson
junction critical current on DC magnetic field applied in
the plane of the junction. We measured IC from transport
current-voltage characteristics, at different values of Hdc

at T = 4.2 K and found that χ′(T = 4.2 K), obtained from
the isotherm T = 4.2 K (similar to that given in Fig. 3),
shows the same Fraunhofer-like dependence on Hdc as the
critical current IC(Hdc) of the junctions forming the ar-
ray (see Fig. 4). This gives further proof that only the
junction critical current is varied in this experiment. This
also indicates that the screening currents at low tempera-
ture (i.e., in the reentrant region) are proportional to the
critical currents of the junctions. In addition, this shows
an alternative way to obtain IC(Hdc) dependence in big
arrays. And finally, a sharp Fraunhofer-like pattern ob-
served in both arrays clearly reflects a rather strong co-
herence (with negligible distribution of critical currents
and sizes of the individual junctions) which is based on
highly correlated response of all single junctions forming
the arrays, thus proving their high quality. Such a unique
behavior of Josephson junctions in our samples provides a
necessary justification for suggested theoretical interpre-

Fig. 4. The critical current IC (open squares) and the real
part of AC susceptibility χ′ (solid triangles) as a function of
DC field Hdc for T = 4.2 K (from Ref. [13]).

tation of the obtained experimental results. Namely, based
on the above-mentioned properties of our arrays, we have
found that practically all the experimental results can be
explained by analyzing the dynamics of just a single unit
cell in the array.

3 Theoretical interpretation and numerical
simulations

To understand the different behavior of the AC suscep-
tibility observed in shunted and unshunted 2D-JJAs, in
principle one would need to analyze in detail the flux dy-
namics in these arrays. However, as we have previously
reported [13], because of the well-defined periodic struc-
ture of our arrays (with no visible distribution of junction
sizes and critical currents), it is reasonable to expect that
the experimental results obtained from the magnetic prop-
erties of our 2D-JJAs can be quite satisfactory explained
by analyzing the dynamics of a single unit cell (plaquette)
of the array. An excellent agreement between a single-loop
approximation and the observed behavior (seen through
the data fits) justifies a posteriori our assumption. It is
important to mention that the idea to use a single unit
cell to qualitatively understand PME was first suggested
by Auletta et al. [24]. They simulated the field-cooled
DC magnetic susceptibility of a single-junction loop and
found a paramagnetic signal at low values of external mag-
netic field.

In our calculations and numerical simulations, the unit
cell is a loop containing four identical Josephson junc-
tions and the measurements correspond to the zero-field
cooling (ZFC) AC magnetic susceptibility. We consider
the junctions of the single unit cell as having capaci-
tance CJ , quasi-particle resistance RJ and critical cur-
rent IC . We have used this simple four-junctions model to
study the magnetic behavior of our 2D-JJA by calculat-
ing the AC complex magnetic susceptibility χ = χ′ + iχ′′
as a function of T , βC and βL. Specifically, shunted sam-
ples are identified through low values of the McCumber
parameter (βC ≈ 1) while high values (βC � 1) indicate
an unshunted 2D-JJA.
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If we apply an AC external field Bac(t) = µ0hac cosωt
normally to the 2D-JJA and a DC field Bdc = µ0Hdc

parallel to the array, then the total magnetic flux Φ(t)
threading the four-junction superconducting loop is given
by Φ(t) = Φext(t) + LI(t) where L is the loop inductance,
Φext(t) = SBac(t) + ldBdc is the flux related to the ap-
plied magnetic field (with l×d being the size of the single
junction area, and S � a2 being the projected area of the
loop), and the circulating current in the loop reads

I(t) = IC(T ) sinφi(t) +
Φ0

2πRJ

dφi

dt
+

CJΦ0

2π

d2φi

dt2
. (1)

Here φi(t) is the gauge-invariant superconducting phase
difference across the ith junction, and Φ0 is the magnetic
flux quantum.

Since the inductance of each loop is L = µ0a � 64 pH
and the critical current of each junction is IC � 150 µA,
for the mixed-state region (above 50 mOe) we can safely
neglect the self-field effects because in this region LI(t) is
always smaller than Φext(t). Besides, since the length l and
the width w of each junction in our array is smaller than
the Josephson penetration depth λJ =

√
Φ0/2πµ0djc0

(where jc0 is the critical current density of the junction,
and d = 2λL + ξ is the size of the contact area with
λL(T ) being the London penetration depth of the junc-
tion and ξ an insulator thickness), namely l � w � 5 µm
and λJ � 20 µm (using jc0 � 600 A/cm2 and λL � 39 nm
for Nb at T = 4.2 K), we can adopt the small-junction
approximation [19] for the gauge-invariant superconduct-
ing phase difference across the ith junction (for simplicity
we assume as usual [13] that φ1 = φ2 = φ3 = φ4 ≡ φi)

φi(t) = φ0(Hdc) +
2πBac(t)S

Φ0
(2)

where φ0(Hdc) = φ0(0) + 2πµ0Hdcdl/Φ0 with φ0(0) being
the initial phase difference.

To properly treat the magnetic properties of the sys-
tem, let us introduce the following Hamiltonian

H(t) = J
4∑

i=1

[1 − cosφi(t)] +
1
2
LI2(t) (3)

which describes the tunneling (first term) and inductive
(second term) contributions to the total energy of a single
plaquette. Here, J(T ) = (Φ0/2π)IC(T ) is the Josephson
coupling energy.

The real part of the complex AC susceptibility is de-
fined as

χ′(T, hac, Hdc) =
∂M

∂hac
(4)

where

M(T, hac, Hdc) = − 1
V

〈
∂H
∂hac

〉
(5)

is the net magnetization of the plaquette. Here V is the
sample’s volume, and 〈...〉 denotes the time averaging over
the period 2π/ω, namely

〈A〉 =
1
2π

∫ 2π

0

d(ωt)A(t). (6)

Taking into account the well-known [25] analytical approx-
imation of the BCS gap parameter (valid for all temper-

atures), ∆(T ) = ∆(0) tanh
(

2.2
√

Tc−T
T

)
for the explicit

temperature dependence of the Josephson critical current

IC(T ) = IC(0)
[
∆(T )
∆(0)

]
tanh

[
∆(T )
2kBT

]
(7)

we successfully fitted all our data using the following set
of parameters: φ0(0) = π

2 (which corresponds to the max-
imum Josephson current within a plaquette), βL(0) = 32,
βC(0) = 32 (for unshunted array) and βC(0) = 1.2 (for
shunted array). The corresponding fits are shown by solid
lines in Figures 2 and 3 for the experimental values of AC
and DC field amplitudes.

In the mixed-state region and for low enough fre-
quencies (this assumption is well-satisfied because in our
case ω � ωLR and ω � ωLC where ωLR = R/L and
ωLC = 1/

√
LC are the two characteristic frequencies of

the problem) from equations (3)−(6) we obtain the fol-
lowing approximate analytical expression for the suscep-
tibility of the plaquette

χ′(T, hac, Hdc) � −χ0(T )
[
βL(T )f1(b) cos

(
2Hdc

H0

)

+f2(b) sin
(

2Hdc

H0

)
− β−1

C (T )
]

(8)

where χ0(T ) = πS2IC(T )/V Φ0, H0 = Φ0/(2πµ0dl) �
10 Oe, f1(b) = J0(2b)−J2(2b), and f2(b) = J0(b)−bJ1(b)−
3J2(b) + bJ3(b) with b = 2πSµ0hac/Φ0 and Jn(x) being
the Bessel function of the nth order.

Notice also that the analysis of equation (8) reproduces
the observed Fraunhofer-like behavior of the susceptibility
in applied DC field (see Fig. 4) and the above-mentioned
fine tuning of the reentrance effect (see also Ref. 13). In-
deed, according to equation (8) (and in agreement with the
observations), for small DC fields the minimum tempera-
ture Tmin (indicating the beginning of the reentrant tran-
sition) varies with Hdc as follows, 1−Tmin/TC � Hdc/H0.

To further test our interpretation and verify the influ-
ence of the parameter βC on the reentrance, we have also
performed extensive numerical simulations of the four-
junction model previously described but without a sim-
plifying assumption about the explicit form of the phase
difference based on equation (2). More precisely, we ob-
tained the temperature behavior of the susceptibility by
solving the set of equations responsible for the flux dynam-
ics within a single plaquette and based on equation (1)
for the total current I(t), the equation for the total flux
Φ(t) = Φext(t)+LI(t) and the flux quantization condition
for four junctions, namely φi(t) = π

2

(
n + Φ

Φ0

)
where n is

an integer. Both Euler and fourth-order Runge-Kutta in-
tegration methods provided the same numerical results.
In Figure 5 we show the real component of the simu-
lated susceptibility χ(T ) corresponding to the fixed value
of βC(T = 4.2 K) = 1 (shunted samples) and different val-
ues of βL(T = 4.2 K) = 1, 10, 15, 20, 30, 40, 50, 60, 90, 150
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Fig. 5. Numerical simulation results for hac = 70 mOe,
Hdc = 0, βC(T = 4.2 K) = 1 and for different values of
βL(T = 4.2 K) based on equations (4)−(7).

Fig. 6. Numerical simulation results for hac = 70 mOe,
Hdc = 0, βL(T = 4.2 K) = 30 and for different values of
βC(T = 4.2 K) based on equations (4)−(7).

and 200. As expected, for this low value of βC reentrance is
not observed for any values of βL. On the other hand, Fig-
ure 6 shows the real component of the simulated χ(T ) but
now using fixed value of βL(T = 4.2 K) = 30 and different
values of βC(T = 4.2 K) = 1, 2, 5, 10, 20, 30 and 100.
This figure clearly shows that reentrance appears for val-
ues of βC > 20. In both cases we used hac = 70 mOe.
We have also simulated the curve for shunted (βL = 30,
βC = 1) and unshunted (βL = 30, βC = 30) samples for
different values of hac (see Fig. 7). In this case the val-
ues of the parameters βL and βC were chosen from our
real 2D-JJA samples. Again, our simulations confirm that

Fig. 7. Curves of the simulated susceptibility (for Hdc = 0
and for different values of hac) corresponding to (a) unshunted
2D-JJA with βL(T = 4.2 K) = 30 and βC(T = 4.2 K) = 30;
(b) shunted 2D-JJA with βL(T = 4.2 K) = 30 and βC(T =
4.2 K) = 1.

dynamic reentrance does not occur for low values of βC ,
independently of the values of βL and hac.

The following comment is in order regarding some ir-
regularities (“jumps” and “steps”) visibly seen in Fig-
ures 5−7 around the transition regions from non-reentrant
to reentrant behavior. It is important to emphasize that
the above irregularities are just artifacts of the numerical
simulations due to the conventional slow-converging real-
time reiteration procedures [13]. They neither correspond
to any experimentally observed behavior (within the accu-
racy of the measurements technique and data acquisition),
nor they reflect any irregular features of the considered
here theoretical model (which predicts a smooth tempera-
ture dependence seen through the data fits). As usual, to
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Fig. 8. Numerically obtained phase diagram (taken for T =
1 K, hac = 70 mOe, and Hdc = 0) which shows the border
between the reentrant (white area) and non-reentrant (shaded
area) behavior in the arrays for different values of βL and βC

parameters.

avoid this kind of artificial (non-physical) discontinuity,
more powerful computers are needed.

Based on the above extensive numerical simulations,
a resulting phase diagram βC − βL (taken for T = 1 K,
hac = 70 mOe, and Hdc = 0) is depicted in Figure 8
which clearly demarcates the border between the reen-
trant (white area) and non-reentrant (shaded area) behav-
ior in the arrays for different values of βL(T ) and βC(T )
parameters at given temperature. In other words, if βL

and βC parameters of any realistic array have the values
inside the white area, this array will exhibit a reentrant
behavior. In addition, this diagram shows that one can
prepare a reentrance exhibiting array by changing one of
the parameters (usually, it is much easier to change βC

by tuning the shunt resistance rather than the geometry
related inductance parameter βL).

It is instructive to mention that a hyperbolic-like char-
acter of βL vs. βC law (seen in Fig. 8) is virtually present in
the approximate analytical expression for the susceptibil-
ity of the plaquette given by equation (8) (notice however
that this expression can not be used to produce any quan-
titative prediction because the neglected in equation (8)
frequency-related terms depend on βL and βC parame-
ters as well). A qualitative behavior of the envelope of
the phase diagram (depicted in Fig. 8) with DC magnetic
field Hdc (for T = 1 K and hac = 70 mOe), obtained using
equation (8), is shown in Figure 9.

And finally, to understand how small values of βC pa-
rameter affect the flux dynamics in shunted arrays, we
have analyzed the Φtot(Φext) diagram. Similarly to those
results previously obtained from unshunted samples [13],
for a shunted sample at fixed temperature this curve is
also very hysteretic (see Fig. 10). In both cases, Φtot vs.
Φext shows multiple branches intersecting the line Φtot = 0

10 30 50 70 90
1

10

100

T= 1K
h

ac
= 70 mOe

4

3

2

1

(1) H
dc

= 0 
(2) H

dc
= 13 Oe 

(3) H
dc

= 19.5 Oe
(4) H

dc
= 26 Oe 

β
C

β
L

Fig. 9. A qualitative behavior of the envelope of the phase
diagram (shown in previous figure) with DC magnetic field Hdc

(for T = 1 K and hac = 70 mOe) obtained from equation (8).

Fig. 10. Numerical simulation results, based on equa-
tions (4)−(7), showing Φtot vs. Φext for shunted 2D-JJA with
βL(T = 4.2 K) = 30 and βC(T = 4.2 K) = 1.

which corresponds to diamagnetic states. For all the other
branches, the intersection with the line Φtot = Φext corre-
sponds to the boundary between diamagnetic states (neg-
ative values of χ′) and paramagnetic states (positive val-
ues of χ′). As we have reported before [13], for unshunted
2D-JJA at temperatures below 7.6 K the appearance of
the first and third branches adds a paramagnetic contribu-
tion to the average value of χ′. When βC is small (shunted
arrays), the analysis of these curves shows that there is no
reentrance at low temperatures because in this case the
second branch appears to be energetically stable, giving
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an extra diamagnetic contribution which overwhelms the
paramagnetic contribution from subsequent branches. In
other words, for low enough values of βC (when the sam-
ples are ZFC and then measured at small values of the
magnetic field), most of the loops will be in the diamag-
netic states, and no paramagnetic response is registered.
As a result, the flux quanta cannot get trapped into the
loops even by the following field-cooling process in small
values of the magnetic field. In this case the supercon-
ducting phases and the junctions will have the same dia-
magnetic response and the resulting measured value of the
magnetic susceptibility will be negative (i.e., diamagnetic)
as well. On the other hand, when βC is large enough (un-
shunted arrays), the second branch becomes energetically
unstable, and the average response of the sample at low
temperatures is paramagnetic (cf. Fig. 7 from Ref. [13]).

In conclusion, our experimental and theoretical re-
sults have demonstrated that the reentrance phenomenon
(and concomitant PME) in artificially prepared Josephson
Junction Arrays is related to the damping effects associ-
ated with the Stewart-McCumber parameter βC . Namely,
reentrant behavior of AC susceptibility takes place in the
underdamped (unshunted) array (with large enough value
of βC) and totally disappears in overdamped (shunted)
arrays.

We thank P. Barbara, C.J. Lobb, R.S. Newrock, and A.
Sanchez for useful discussions. S.S. and F.M.A.M. gratefully
acknowledge financial support from Brazilian Agency FAPESP
under grant 03/00296-5.
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